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Representations of orthosymplectic superalgebras: 
11. Young diagrams and weight space techniques 

R J Farmer and P D Jarvist 
Department of Physics, University of Tasmania, GPO Box 252C, Hobart, Tasmania 7001, 
Australia 

Received 22 November 1983, in final form 20 March 1984 

Abstract. Finite-dimensional graded tensor representations of OSp(M/ N )  are enumerated 
via standard Young diagrams, and their corresponding highest weight and Kac-Dynkin 
labels are given. A uniform set of conditions on the diagram shape, necessary and sufficient 
for atypicality, are presented. Weight space techniques are used to provide a complete 
analysis of all atypical representations for the low-rank cases OSp(2/2), OSp(3/2) and 
o s ~ ( 4 / 2 ) .  

1. Introduction and main results 

Continued recent interest in supersymmetries in physics has underlined the importance 
of developing the supporting mathematical framework, in particular for the classical 
superalgebras. This paper continues a study of representations of orthosymplectic 
superalgebras begun in Farmer and Jarvis (1983, hereafter referred to as I) wherein 
are given references to a variety of physical applications (for most recent developments 
see, for example, Bars 1982a, Efetov 1983, and Duff 1983). 

The methods of I using superfield (functions on supermanifolds) realisations of 
representations are complemented in the present work by attention to weight space 
techniques and to the graded Young diagrams for orthosymplectic superalgebras. Since 
the original work (Dondi and Jarvis 1980, 1981, Balantekin and Bars 1981), several 
reviews have appeared on supertableaux for the unitary cases SU(m + l / n  + 1)= 
A(m, n )  (Bars 1982b, Bars et a1 1982; see also Delduc and Gourdin 1982) and similar 
ground is covered here (see also King 1982) for the orthosymplectic case O S p ( M / N )  
which includes the classes OSp(l/2n)= B(o,  n), OSp(2/2n - 2 ) ~  C(n) ,  OSp(2m + 
1/2n) = B(m, n) and OSp(2m/2n) = D(m, n )  (for the classification of superalgebras 
see Kac 1977, Rittenberg 1978, Scheunert 1979). 

As in I the focus of the work is to provide concrete constructions in specific cases 
of use for physical applications and also within which general open questions regarding, 
for example, atypical and indecomposable representations may be answered explicitly. 
Thus in Q 3 standard Young diagrams for OSp(M/ N )  are enumerated and the corres- 
ponding Kac-Dynkin labels given. This allows the atypicality conditions of Kac (1978) 
to be formulated as constraints on the diagram shape (table 2 ) .  In § 4 an explicit 
weight-space construction is used to provide a complete analysis of all finite- 
dimensional irreducible representations of the lowest rank members of each of the 
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2366 R J Farmer and P D Jarvis 

classes, namely C(2) ,  B(1,l)  and D(2, l ) .  In particular the structure of the atypical 
representations is elucidated (table 3). The formalism also entails the consideration 
of inner products and (grade) star conditions. The results are negative in that finite- 
dimensional irreducible grade star representations on a graded Hilbert space (i.e. with 
positive definite inner product) exist for only a few cases in the examples studied (0 4.2). 

In § 2 we establish the notation and review the structure of orthosymplectic superal- 
gebras with tabulations of the Cartan matrices, root systems and generators in a weight 
basis (Kac 1977, 1978, Hurni and Morel 1982, cf. Bars er a1 1982, Hurni and Morel 
1983, Tits 1967). 

2. Structure of superalgebras 

In this section we present the alg&ras for B(o, n ) ,  B(m,  n ) ,  C ( n )  and D(m, n )  which 
we will be using in the succeeding sections. The root systems, Dynkin diagrams and 
Cartan matrices have been given by Kac (1978). For completeness we present them 
here. C ( n )  belongs to the class I superalgebras which can be decomposed as G = G - ,  0 
GoOGl with [G,, G,]c Gl+,. B(o,  n ) ,  B ( m ,  n) and D(m, n )  belong to the class I1 
superalgebras which can be decomposed as G = GOO GI with [GI,  G l ] c  Go. The even 
(odd) roots we designate as A,(A,) .  For O S p ( M / N )  the roots are expressed in terms 
of linear functions E , ,  E * ,  . . . , E~, , , ,~ , ,  S I ,  a 2 , .  . . , S N I Z  which form a unit basis of H * ,  
the dual space of the Cartan subalgebra H, with inner product ( E ~ ,  E,) = a,], (8k, 8,) = - 8 k l ,  

( E , ,  6,) = 0, where 1 S i, j S [ M / 2 ] ,  1 S k, 1 G N / 2  ([M/2] is the integer part of M/2). 
We work in the basis provided by Kac (1978) which can be written in the following 

form: if hi (i = 1 , 2 , .  . . , r ;  r = rank of the superalgebra) are the generators of the Cartan 
subalgebra and a:(a,J are the generators corresponding to the ith positive (negative) 
simple root, then 

[ a  T, a,] = [hi, h,] = 0 [h i ,  a 3  = ia,,a; 

where the a, are elements of the Cartan matrix. The remaining generators may be 
defined from the simple roots by (anti-)commutation (cf. Tits 1967, Hurni and Morel 
1982, 1983). 

The weight space decomposition of a representation is given by the eigenvalues ai 
and b' of a vector with respect to h, and k respectively. The so-called 'hidden' Cartan 
generator, k, is defined by equations (2.1), (2.2), (2.3) and (2.4) for B(o, n ) ,  B(m,  n), 
D(m, n )  and C ( n )  respectively. We label the highest weight vector of a representation 
by ai and b. 

2.1. B(o, n )  

ho = { *28k, *8k * a,} k # l  

= {*8k} l ~ k , l ~ n .  

The Dynkin diagram with the set of simple positive roots chosen and their associated 

c - - - - - - - - -c 
6 ,  -62 6 2  - 83 8 3  - 84 s,-2 - 6,- I 6,- I - 6, 6" 

a:  a;  a ;  a n - 2  a n - 1  

generators is 

+ + ( y , + = p n +  
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[a,] = 
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- 
2 -1 

-1 2 -1 
-1 2 - 1  

- 1  2 -1  
- -2 2. 

[ Q U I  = 

2.2. B(m,  n) m > 0 

A o = { * E , * E j ,  * E h  *26,,*6,*6,} i # j , k # l  

A ,  = { * 8 k r  * E ,  f 6 k }  1 6 i, j S m ; 1 s k, I < n. 

The Dynkin diagram is 
o----- -0-8-0- - - - - 0-2-Q 

61-82 82-63 8,- , -6n E I - E ~  E m - 2 - E m - I  E, 

a: 0: aL-1 a:=P:+ . , '+I  a,++,-* a n + + m - i  a L + m  

where we have given the set of positive simple roots chosen and the generator associated 
with each. The Cartan matrix is - 

2 -1 
-1 2 - 

- 1  
1 
2 -  

1 2 -  
-1 

- 1  
0 + 1  

- 1  2 -1  
-1 2 - 1  

1 2 - 1  
-2 2 
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- 1  
0 

2- 

There exists also a ‘hidden’ generator, k, of the Cartan subalgebra of S p ( 2 n ) .  k 
will be some linear combination of the hi’s which satisfies the requirements 

[k, a:] = 0 n + l s j s n + m  

[k ,  a:-,]= T a : _ ,  

[ k , { P , P l ’ l =  * 2 { P , P } +  

k =  h , , - h n + f - h n + 2 - .  . . -h , ,+ , , - I - ihn+ , , , .  ( 2 .2 )  

where { P, P }  refers to one of the ‘hidden’ generators given below. We find 

Associated with the nth node of the Dynkin diagram we also hav: a ‘hidden’ S p ( 2 n )  
generator which in the basis chosen can be taken as one of { P,Y*, P,Y:,} where n G j s 
n + m  - 1 or as {PZL,, PZ,,,}. 

2.3. D(m, n )  

A0 zz { * E ,  *E, ;  1 2 8 , ;  *8, * 8,) 

A ,  = ( *& i  * 8 k }  

i # j , k # l  

1 6  i , j  G m ;  1 < k, Is n. 

The Dynkin diagram with the set of simple positive roots chosen and their associated 
generators is 

E m  - I - Em 

a n + m - l  

8, a: - 8 2  8 2 - 8 3  ff2’ S n - , - S ,  a n - l  + a;= a n - & +  f l z +  E l  a:+l - E 2  E,-2 a n + m - 2  +< - &,-I  

0-0 ---_- *-s-o------ 

&,-I  + E m  

The Cartan matrix is 

-1 2 - 1  

2 -1 
- 1  0 +1 

-1 2 - 

2 -1 
- 1  2 - 1  - 

- 1  2 
-1 0 

We construct the remaining odd generators in the following way: 

P? = E [ .  9 .  [ [PZ’ ,  a:-11, a:-21, * * . I, 4 1  
Pi’= * .  [[Ph*, a:+11, a:+*], * * I, ..:I 
Ph:m=[Plnlt+m-2, 
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- 
- 0 + I  

-1  2 - 1  
-1 2 - 1  

- 1  2 -1 
[a , ]  = 

- 1  2 -1  
-1 2 -2 

-1 2 - - 

2369 

n + 1  c j s n + m -  I ;  1 s i s n .  

The ‘hidden’ Sp(2n) generator in the Cartan subalgebra is 

k = h, - h,  +I - hn+z - . . . - h,,+,-z -;(h,+,,-l + h n + m ) .  (2.3) 

The ‘hidden’ Sp(2n) generator associated with the nth Dynkin node can be taken as 
one of 

or as 
{ P,”’, where n 6j6 n + m  -2 

{ P : : m - l ,  P z I m l  
in the basis of simple roots we have chosen. 

We construct the remaining odd generators in the following way 

3. Young supertableaux and atypicality conditions 

In this section we examine finite-dimensional representations of OSp(M/ N )  via stan- 
dard Young diagrams. These can be realised by graded symmetrised, supertraceless 
tensors (Dondi and Jarvis 1981). These can be decomposed in terms of irreducible 
representations of O ( M )  XSp(N), with branching rule (King 1982), 

E A I E  [A/51(&W=CC [ A / 5 1 ( t / P )  (3.1 a )  
5 5 6  

+ For the C(2)= A(1.0) case, see $4.2.  
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(3.lb) 

Here 6 runs over all divisors of A ;  p corresponds to partitions with even column 
lengths, and 6 to partitions with even row lengths. 

In order to present necessary and sufficient conditions on the diagram shape for 
atypicalityt, we examine each of B(m,  n), C(n) and D(m, n) in turn to establish the 
correspondence between the Kac-Dynkin labels corresponding to the highest weight 
and the diagram labels. The conditions for atypicality are general for OSp(M/N).  
(Further details of the weight-space realisations are given in § 4.) In the sequel we 
consider only ‘standard’ supertableaux in the following sense: for B(m,  n) and D(m, n) 
the diagrams are such that if C, is the length of the ith column then C, rn for i > n. 
for C(n) = OSp(2/2n - 2) we require C, c 1 for i > n - 1. Of course, all diagrams must 
be proper. 

3.1. B(m, n) m 3 0 

Consider the supertableau 

[ A I  = 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

Pn 

where A ,  is the number of boxes beyond the nth column in the ith row, with i s  m, 
and pJ is the number of boxes in the j th  column, with j S  n. We will designate this 
diagram as [ A , ,  A,, . . . , A,; pl,  p2 , .  . . , pn] .  A general diagram in the decomposition 
(3.1 a) ,  after the appropriate modification, will have the form 

+ A representation is atypical if ( A  + p ,  a) = 0 for some a E Ay. Here A is the highest weight, p = po-  p ,  is 
the graded half-sum of the positive even and odd roots, and A:=A:\ iA+nA: (Ksc 1978). 
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The relationships, for (3.3), between the O(2m + 1) xSp(2n) Dynkin labels and the 
diagram labels are given by (Black and Wybourne 1983) 

ai = p { - p ; ,  a i = p ; - p i ,  . . . ,  a ; - l = p . l - l - p ; ,  b t = p ;  
(3.4) a ; + ,  = A ' ;  - A ; ,  A ; -A; ,  . . . , a',+,-, - - A',,,-l -A',,,, a',,, =2Ah 

where ai, a;, . . . , a : - ,  and b' refer to the Sp(2n) labels and a ;+ , ,  a;,,, , . . , a;+,,, refer 
to the O(2m + 1) labels. 

To determine which diagram in (3.1 a )  corresponds to the highest weight state, '1, 
with weight components A (  h,)  = a,, A ( k )  = b, of a B( m, n) representation we first consider 
the action of the odd negative generators on A. The weights of these are presented in 
tables l a  and  lb.  The action of all the odd negative generators can be obtained by 
considering each of those in table l a  by themselves and  in conjunction with each of 
the even supplementary operators in table lb.  Examination of these reveals that A 
can be uniquely determined by application of the following sequence of selection 
criteria: (i) select those states of maximum b', (ii) within this subset select those states 
of maximum a : - , ,  (iii) select those states of maximum a;-*, etc., until we finally select 
the state of maximum ai. This state will be A. Expressed in diagram notation these 
criteria are: (i) select those diagrams of maximum p; ,  (ii) of these select those diagrams 
of maximum p ; - , ,  etc., until we finally select the diagram with maximum pi .  The 
diagram which corresponds to A is obtained by taking p = {0} and  

Table la. Weight components for some odd negative generators of B(m, n )  and D(m, n). 

0 + I  - 1  
+ I  - 1  0 
- 1  0 

h, + m  

k - 1  0 0 0 0 0 0 
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Table lb. Weight components for even negative 'supplementary' generators of B(m,  n), 

-- -- - - _  -_ 
e l  e ;  e;  e; . . .  e ; , - ,  e;, g;, e , , - ,  e , , , - 2 . . .  e; e ,  e l  

h-1 
hn - I  - I  - 1  - I  - 1  - 1  - I  - 1  - I  - I  - I  -2 
h,,+l -2 - 1  - I  - I  - 1  - 1  - 1  - 1  - I  - 1  0 -2 
h,,+2 + I  - 1  0 0 0 0 0 0 O i - 1 - 1  0 
hn+3 + I  - I  0 - 1  0 
hn +4 + I  - 1  0 
h,, t S  + I  

hn+m-3 + I  
hn+,,-2 
h, t,,, - I - 1  0 + I  - 1  0 
h,, + ,,, +2 0 -2 0 0 
k 0 0  0 0 0 0 0 0 0 0 0 0  

Where e ;  = [ .  . . [ [ a i + , ,  a,+2I9 ai+,],  . , . a;+, ]  

+ I  - I  

i; = [ .  . . [ [ e ; ,  a;+,,,], . i+,,,-II,.  . . a;+,] 
and 1 s is m. 

Table IC. Weight components for even negative 'supplementary' generators for D ( m ,  n ) .  

- I  
- 1  
- 1  
+ I  

0 

- 1  
- I  
0 

- I  
+ I  

0 

- 1  
- 1  
0 
0 

- 1  
+ I  

0 

- I  
- I  
0 

0 
- 1  
+ I  
+ I  
0 

- 1  
- 1  
0 

0 
0 

- I  
+ I  
0 

- 1  
- 1  
0 

0 
0 

+ I  
- 1  
0 

- 1  - 1  - 1  - 1  -2 
- I  - 1  - I  0 -2 
0 0 + I  - 1  0 

0 
- 1  0 

0 Cl 

+ I  - I  
- I  0 
- 1  0 
0 0 0 0 0  
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Table Id. Weight components for all negative generators of C(n) .  

P ;  P ;  P ;  P i  P i - I  P i  Pi-1 P i - 2  P;  p'; 

- 1  - 1  - 1  - I  - I  -2 0 - 1  - I  - I  
+ I  - I  0 0 0 0 0 0 + l  -1  

0 + I  - 1  0 0 0 0 0 - 1  0 
0 + I  - I  0 0 0 0 0 0 

0 + I  0 0 0 0 0 

0 + I  
0 0 + I  - I  

- I  + I  -1  0 
+ I  -1  0 0 
- I  - 1  - I  - I  - 1  - 1  - I  - 1  - 1  - I  

~~ ~ 

The above tables show the weight components a(h , )  and a ( k ) ,  where (I are the roots associated with the 
indicated root vectors. 

The terms in brackets in table la  indicate the modifications necessary for consideration of B(o ,  n ) .  

I t  will be given by taking A :  = A ,  and pi=p ,  in (3.3). Therefore the Kac-Dynkin 
labels a k  and b in terms of the supertableaux labels A ,  and pj are 

= PI -p2, a 2 =  p2-p3, * ' . 9 a n - l  = p n - I  - p n ,  

a,, = p, + A , ,  a,,, = A ,  - A 2 ,  ant2 = A 2 -  A3,  . . . , (3.6) 

an+ , , - ,  - A m - i - A m ,  an+,,=2hm, b = p n .  - 

Using (3.6) we can now rewrite the conditions for atypicality (Kac 1978) in diagram 
notation. These results are given in table 2. We prove that our above choice (3.5) for 
6, uniquely determines A in appendix 1. 

Table 2. Atypicality conditions for OSp(M/ N ) .  

(i) 

(ii) 

p,  + A ,  + N / 2  = j  + i - I 
pt + N / 2 + j +  1 = A ,  + M  + i  

Where l s i s N / 2 :  l c j s [ M / 2 ] .  
([M/2] is the largest integer less than or equal to M/2.) 
The diagram labelling is as given in (3.2). 
For C ( n )  = OSp(2/2n - 2) the correlation between the above diagram labelling and that 

Note that for the B(o, n) algebra, as defined in 0 2.1, we have a direct correspondence 
with the above by setting A ,  = 0 V i .  There are no atypical representations B(o,  n) (Kac 
1978). 

o f ~ 3 . 3 i s ~ , = A , + n - l , a n d  v , = p , - I .  I f K I < n - l , t h e n p , = l  f o r ~ , + l S i S n - l .  

3.2. D(m, n) 

We again consider the supertableau (3.2) for which ( 3 . 1 ~ )  and (3.3) are still applicable. 
The relationships for (3.3) between the O(2m) xSp(2n) Dynkin labels and the diagram 
labels are given by (Black and Wybourne 1983): 

ai = pi - p i ,  a; = p i - p ; ,  . . . , a : - ,  = pL-, -p',, b'= p; ,  

a',+, = A {  - A i ,  a',+,= A i -  A;, . . . , a',,,-, - - A L - 2 - A L - l ,  
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--I - - I  a n + , , - ,  = A',,,-l -A',,,, 

an+, , ,  = A',,,-l +A',,,, 

a n + , , - ,  = A',,-, SA', ,  

(3.7) an+,,, = A i - ,  -A',, 

where a i ,  a i , .  . . , a',-l  and b' refer to the Sp(2n) labels and  
a ; , , ,  a :+ , ,  . . . , a:> , , - , ,  a::,,, refer to the O(2m) labels. If A',, # 0, both signs arise for 
a::,,-l and a::,,, corresponding to the reduction of the tensor [ A ]  to a direct sum 
[A]+  +[A]-  of conjugate representations of D(m) .  

To determine which diagram in (3.la) corresponds to A we again consider the 
action of the odd negative generators on A.  These weights are presented in tables l a  
and IC. The action of all the odd negative generators can be obtained by considering 
each of those in table l a  by themselves and in conjunction with each of the even 
supplementary operators in table IC. Examination of these reveals that A can be 
uniquely determined by application of the same sequence of selection criteria as for 
B(m, n). Consequently the diagram which corresponds to A is again obtained by taking 
p = {0} and  6 as in (3.5). If A,,, # 0 the sign ambiguity corresponds to the decomposition 
of the graded tensor [ A ]  into a sum of two conjugate representations of D(m, n) with 
distinct Kac-Dynkin labels 

+-I --I 

a l = p I - p 2 ~  a 2 = p 2 - p 3 ,  ' . .  9 an-, = P n - l  - p n ,  

a, = p, + A  ,, a ,+ ,  = A I - A 2 ,  antz = A 2  - A3,  . . . , 

a , + , - 2 = ~ , - 2 - ~ , - 1 ,  a i+ , , , - ,  = A , - ,  - A m ,  (3.8) 

aiT, , ,=Am-l  +A,,,, ~ ~ + , - I = A , - I + A , , , ,  

a;+,,,  = A, , - ,  -A,,,, b = pn. 

This decomposition is the super-analogue of the D( m )  tensor reduction described 
above and  is related to the outer automorphism of D(m, n) generated by a:+, ++ ai+,,,-, 
for the simple roots. It is clear from table I C  that this corresponds to the usual 
automorphism of D ( m )  on each irreducible representation of O(2m) x Sp(2n). 

Using (3.8), the conditions for atypicality (Kac 1978) are presented in diagram 
notation in table 2. Note that the conditions are independent of the sign choice 
for A,,, # 0. The proof that the choice (3.5) for 6 uniquely determines A is given in 
appendix 1. 

I t  is interesting to note that Kac's supplementary conditions, for the representation 
to be finite dimensional (Kac 1978) for B(m,  n) and D(m, n), follow naturally in the 
above scheme. 

3.3. C ( n )  

We consider here the supertableau 

(3.9) 
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where K ,  is the number of boxes in the first row and vj + 1 is the number of boxes in 
the j t h  column, with j G n - 1.  In the decomposition (3.1 b )  a general diagram will take 
the following form, after modification, 

43 ( -_- - - - - - - - -  - ) . (3.10) 

vA-2 

I 
V L - I  

The relationships, for (3. lo), between the O(2) x Sp(2n - 2) Dynkin labels and  the 
diagram labels are given by (Black and Wybourne 1983): 

= vi-*- vL-,, a i  = vi-, 

where b’ is the O(2) label and a i , .  . . , a i  the Sp(2n -2) labels. Since the branching 
rule for 0(2)4U(1)- SO(2) is [b ’ ]&{b’ }  +{6’} (King 1975), then an  O(2) tensor [ A ]  with 
Dynkin label b‘ will decompose into a direct sum [>,]++[[A]- with Dynkin labels 
b“ = +b’ and b’- = - b’ respectively. 

To determine which diagram in (3.lb) corresponds to A ,  we again consider the 
action of the odd negative generators on A.  These results are presented in table Id. 
Examination of these reveals that the O(2) x Sp(2n - 2 )  highest weight state of maximum 
b’ must be A. The diagram (3.10) which corresponds to A must, therefore, have K I = K I. 

This state is unique and is obtained by taking 5 = ( K ~ }  and 6 =IO}.  For this situation 
(3.10) becomes [ K , ] ( v , ,  v2,. . . , vn-,). To show that this is indeed the only diagram in 
(3.1 b) containing [ K ~ ]  we need only show that if 5 contains more than one row, then 
[5 /D]  contains only diagrams [ K { ]  with K {  < K , .  This is achieved by consideration of 
the chain O(2)T rU(2)40(2) which diagrammatically can be expressed as 
[ ( / D ] t r { ( } J [ t / D ]  (King 1975). In U(2) we need consider only 15). If it has more 
than two rows it will be zero and if it has two rows, i.e. if (5) = { S i ,  &}, then it will 
have the same O(2) content as { 6, - &}. Thus when we consider the branching { (}&[&/ D ]  
there will be no diagram consisting of just [ K ~ ]  if & # 0. 

If K , >  n - 1  the graded tensor [ A ]  decomposes into a sum of two conjugate 
representations of C ( n )  with distinct Kac-Dynkin labels 

b’ = + K , ,  

a? = v i  - vj, a3 = v j  - v3, . . . , a,,.., = - U,,-,, a,, = v ~ - ~ .  

b-  = 2r? - K~ - 2, a ;  = K ,  + v i ,  a = 2n - K~ - 2 + v I ,  

Using these we present the atypicality conditions in table 2 .  Note that the conditions 
are independent of which of the two conjugate representations we choose to write them. 

4. Weight space realisations 

In this section we give a procedure for the explicit construction of irreducible representa- 
tions of the orthosymplectic superalgebras by weight-space techniques. The general 
method follows Kac (1977, 1978); explicit results have been obtained by Hurni and  
Morel (1982) for several particular representations of various orthosymplectic superal- 
gebras (see also Hurni and Morel 1983). 
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We first present the general formalism (0 4.1), and then illustrate this by a complete 
analysis of the finite-dimensional irreducible representations of the lowest rank superal- 
gebras from each orthosymplectic class, namely OSp(2/2) = C(2), OSp(3/2) = B( I ,  1) 
and OSp(4/2)= D(2, I)(§§ 4.24.4). 

4.1. Formalism 

We work with a representation possessing a highest weight A, and a corresponding 
highest weight vector A such that h , A  = A(h,)A = a , A  and cy:A = 0 for all positive root 
vectors (see $ 2  for notation). The representation is spanned by vectors of the form 
n,(  a,)kiA;  in fact, the distinct multiplets of the even subalgebra O( M )  x Sp( N )  are 
generated from the 2 M N ' 2  states 

4, = (Lmkl(. . . ) ( P M N , 2 ) k " N / 2 ,  

where the p;  are odd negative root vectors, and k, = 0 or 1, by the application of even 
generators. 

Kac (1977, 1978) has given the conditions on a, under which the representation is 
finite dimensional and irreducible (or typical). If these conditions are not satisfied, 
the representation is indecomposable, and the O ( M )  xSp(N)  structure of the irreduc- 
ible composition factors (atypical representations) may be explicitly determined. (In 
fact, in certain cases some of the $, belong to infinite-dimensional subspaces, and it 
is necessary to revert to the induced module construction (Kac 1977, see also Hum- 
phreys 1972) for an interpretation.) 

For our construction it is useful to introduce an 'inner product' on the representation 
space. This depends on a choice of conjugation operation of the superalgebra. Follow- 
ing Scheunert et al (1977) this can be an adjoint (?), or a superadjoint ($). Given that 
either exists, we have two different inner products ( , )A or ( , ) s  defined with 
respect to a fixed basis of the superalgebra by 

(g;g2. .  . g,A,f;f;. * . ~ ~ A ) A = x  

if 

(g,)L.. . (g;)'(g;>'f;f;. . . f ,A = XA 

and 

(g;g;. . . g,A,f;f;. . . f , A ) S = ( - 1 ) " 1 + ~ 2 +  +'p Y 
if 

(g;g; . . . gJ'ff;f; . . . f ;A = y A, 

and zero otherwise (i.e. if the vectors have different weights). Here g;, f,- are negative 
root vectors of degrees y I  and 7, respectively and (g,g,)* = ( - l ) y , y l g ~ g ~ ,  and adjoints 
and superadjoints are given in appendix 2. A characterisation of a vector U which 
belongs to an invariant subspace is that its length ( U ,  U )  should vanish (cf. Humphreys 
1972, exercise 20.9); we apply this criterion to 'highest weight' vectors x, of the even 
subalgebra O ( M )  x Sp( N ) .  

Given the $, and the inner product, the first stage is to write down the x, by Schmidt 
orthogonalisation, namely (if there is no degeneracy) 

(4.1) XI = 4, - c ($,, 4 k ) 4 k / ( 4 k r  d ' k )  
k < I  
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where 4 k  = EkXk has the same weight as E ;  is an appropriate product of even 
negative root vectors, and ( 4 k ,  & ) / ( + J ,  4 k )  f 0 (these cases require separate analysis). 

For the coefficients of & in (4.1) we find that 

($1, 4 k ) A / ( 4 k ,  4k)A=(@,;,  4 k ) S / ( 4 k t  4 k ) S  

and consequently the highest weight vector, xl, will be the same independent of whether 
it is defined using an adjoint or a grade adjoint operation. The second stage is to 
evaluate the lengths (xl, x,)  and identify atypicality conditions and invariant subspaces. 

The above construction shows that the whole representation can be made star or 
grade star. Indeed since the individual (x,, x ~ ) ~  and (xi, x , ) ~  differ at most by a sign, 
the crucial question is whether the representation is on a graded Hilbert space. In 
fact, we find no such finite-dimensional star representations for B(m, n )  and D ( m ,  n ) ,  
but two classes for C(2), depending on how the adjoint is defined, in agreement with 
Scheunert et a1 (1977). In  the grade star case there exist two classes of finite-dimensional 
representations on a graded Hilbert space depending on how the superadjoint is 
defined, as discussed in appendix 2.  These representations are given for the cases 
studied in the following sections. 

In the examples we consider in the following sections we find that if in (4.1) 
(4/, 4,)/($J, 4,) = 0, then for the procedure to be consistent (4.1) must be written as 

(4.1 a)  

We find that although xi is not strictly a highest weight of the even subalgebra, it is 
part of the infinite-dimensional invariant subspace and therefore does not appear in 
the finite-dimensional factor space. If the KacDynkin labels have been chosen 
appropriately (Kac 1978) so that A is the highest weight of a finite-dimensional factor 
space (so that supplementary conditions may apply), then (x i ,  xi) = 0. To determine 
the irreducible representations for these 'special' cases, we have found it necessary to 
examine explicitly matrix elements n(C, g : ) X k ,  where n(f;., g : )  is some product of 
f:, f;, g:  and g ; .  

4.2. C(2) 

Dynkin diagram: 

OSp(2/2) 5 A(1, 0) 

Cartan matrix: 

( a , , = [ - ,  0 + , I .  + I  

The odd generators are here designated as PI*, P;* .  The even generators corres- 
ponding to the even positive and negative simple roots are a;. The generators of the 
Cartan subalgebra are h,  and h,. The Cartan generator corresponding to the O ( 2 )  
generator is given by k = 2hl  - h,. 

We designate the highest weight vector of an OSp(2/2) representation as A, with 
weight components ( U , ,  a,; b = 2a,  -az )  where h , A  = A(h, )A= a iA ,  and k A  = A ( k ) A  = 
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bA. Any OSp(2/2) representation can be uniquely decomposed in terms of O(2) x Sp(2) 
irreducible representations. In  general we have four of these (see 5 4.1). The weight 
components of the O(2) x Sp(2) highest weight vectors are given below 

(LI = A :  (a12 a,; b )  

(L4 = p1-pi-A: ( a 1 - l , u 2 ; b - 2 ) .  

Applying the procedure discussed in Q 4.1, we find the corresponding O(2) x Sp(2) 
highest weight vectors are given by the following 

1 
XI = *I x2 = $2 x3 = 93 += ff ;xr x 4  = $4. (4.3) 

As discussed in § 4.1, to find the conditions under which a state x, decouples from the 
highest weight we look for those conditions under which (x,, x,) = 0. The inner products 
of the above states are given by the following: 

( x l , X I ) A I , Z = ( X l r X I ) S I , Z =  1 

( x 2 ,  X2)AI = - ( x 2 3  X2)AZ = - ( x 2 3  Y2)SI = (x2, x Z ) S 2  = 

( x 3 9  X 3 ) A I  = -(X3r X 3 ) A Z  = - ( x 3 ,  x3k.l = (x3 ,  x 3 ) S z  = -a2(a2 - 

(x4, X 4 ) A I , 2  = -(x4, x4)SI  = -(x4, x4)S2 = - a l ( a 2  - 

(4.4) 
+ l)/(az + 1 )  

+ I ) .  

I t  can be seen that under the conditions (i) a ,  = 0 and (ii) a2- a ,  + 1 = 0 the OSp(2/2) 
representation specified by the highest weight vector, A, is not irreducible and can be 
decomposed as shown in table 3 .  We require a, to be a non-negative integer for the 
representation to be finite dimensional. 

From (4.4) we see that the only finite-dimensional irreducible representations 
defined on a graded Hilbert space are the following: 

Star representations: (AI) :  {xl ,  xr ,  x 3 ,  x4} if b > a, 1-2, {xl, x 2 )  if b = a, +2,  {xl> if 
a ,=b=O;  (A2): ( Y ~ , X ~ , X ~ , X ~ }  i f  b+a,<O, {xl,x3} if a 2 + b = 0 .  

Grade star representations: (Sl):  {xl ,  ,y3} if a, + b = 0: (S2): {x,, x,, ,y4} if a, = 0 and 
0 < b < 2. (x l ,  x,} if fa, - i b  + 1 = 0, {xl} if  a, = b = 0. 

Table 3. Finite-dimensional atypical irreducible representations. 

Atypicality condition Factor space 

OSp(2/2): a ,  = 0 
a z - a , + I = O  

a Z - a , + I = O  
OSp(3/2): a l  = 0 

OSp(4/2): a ,  = 0 
a z - u I  + I  = O  

a 3 - a , + 1 = 0  

a, f a 3  - a ,  + 2  = 0 

Invariant subspace 

XZ, X4 
X 3 ,  X4 
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These results are in agreement with those of Scheunert et a1 (1977b) where the 

Taking C(2) simply as the n = 2 case of the general treatment of C (  n )  as given in 
representation labels ( b ,  q )  correspond to ( f b  -4 ,  f a z  +i) in the present notation. 

3 3  2 and 3 and Kac (1978) corresponds to taking the Cartan matrix as 

With this, the value of the a ,  label in $ 5  2 and 3 and Kac (1978) will be twice the value 
of the a ,  label in this section. 

4.3. B(1, I) = OSp(3/2) 

Dynkin diagram: - 
a , - & ,  E ?  

P" a2 

Cartan matrix: 

0 + I  
(a1,) = [ -2 2]. 

The odd generators are here designated as P I = ,  pi*, piz. The even generators are 
a5 corresponding to the even positive and negative simple roots. The 'hidden' Sp(2) 
generators are given by { p ; - ,  pi*}. The Cartan generators are h ,  and h2. The Cartan 
generator corresponding to the Sp(2) sector is given by k = h ,  - i h 2 .  

We designate the highest weight vector of an OSp(3/2) representation as A, with 
weight components ( a , ,  a,; b = a ,  - ;az) ,  where h , A  = h ( h , ) , i  = a,,\, k A  = h ( k ) A =  bA. 
Any OSp(3/2) representation can be uniquely decomposed in terms of O(3) x Sp(2) 
irreducible representations. In  general there will be eight of these (see 5 4.1). The 
weight components of the O(3) x Sp(2) highest weight vectors are given below 

9 ,  = A:  (a , ,az :  b )  
l,b2 = p I -11: 

$3  = PA-.\: 
( U ' ,  U ,  + 2 ;  b - I )  

( U ,  - I ,  U,; 6 -  1) 

(L4 = E;-.\: ( ~ , - 2 , ~ , - 2 ;  b - I )  

95 = p ' - p : - l \ :  ( U , - I ,  ~ , + 2 ;  b-2)  

9,=p1-p;-;2: ( U ,  -2, U,; b-2) 

9, = p;-p;-.A: 
98 = p , - p ; - p : - n :  

( U '  - 3 ,  U , - 2 ;  b - 2 )  

( U ,  -3, U,; 6-3). 

(4.5) 

Applying the procedure discussed in 3 4.1, we find the corresponding O(3) x Sp(2) 
highest weight vectors are given by the fo!lowing: 

XI = 91 ; x2 = 92 
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As discussed in Q 4.1 the conditions for which (xi, x,) = 0 are the conditions for which 
x, decouples from the highest weight. The inner products of the above states are given 
below 

(Xi ,  X l ) S l . 2  = 1 

(x2, X2)sr = - (x29  x 2 ) s 2  = -a, 

(x3, X J S I  = -(x3, X3)SZ = +a2(a2 - 2al +2)/(a2 +2) 

(x4, x4)sI = -(x4, x 4 ) S 2 =  +4(a2- l ) ( a 2 -  a ,  + 1)/(a2 + I ) ,  a , f O  
(4.7) 

b # O  

a , fO ,  b f O  

(x5, x5)Sl  = (x51 x 5 ) S 2  = (a2 -201 +2)  

(x6, x 6 ) S I  = (x69 x 6 ) S 2  = + 4 a l a 2 ( a 2  - ai + 1)(a2-2al +2)/[(a2 +2)(a2 -2ai)l,  

(x7, x7)sI = (x7, x7)s2 = -4(a2 - 1)(a2- a, + l ) (a2-2a l  +2)/(a2 + I ) ,  

(XB, X d S l  = 4x8, X d S 2  = 4al(a2 - a ,  + 1 )(a2 - 2a ,  +4), 

I t  can be seen that under the condition a, - U ,  + 1 = 0, the OSp(3/2) representation 
specified by the highest weight vector, A, is not irreducible and can be decomposed 
as shown in table 3. As discussed in 0 4.1, if b = 0, 1 or a, = 0, then (4.6) must be 
modified as per (4.1 a) .  If b = 0, then the representation is atypical and to obtain a 
finite-dimensional representation we must also impose the supplementary condition 
a, = 0 (Kac 1978). This gives the singlet, x, ,  as the only irreducible finite-dimensional 
representation. For the ‘special’ cases a, = 0 or b = 1 ,  we find the only finite-dimensional 
irreducible representations occur as factor spaces. These are a, = 0, {xl,  x2, x5, x8), the 
adjoint is obtained from this by setting b = 2; b = 1, {x,, x2, x4}. I f  a, = 0 and b = 1, 
we obtain the fundamental {x,, x2}. The decompositions for all atypical, irreducible, 
finite-dimensional representations are given in table 3. For the existence of a finite- 
dimensional representation, we require a2 and b to be non-negative integers. 

From (4.7) and the above discussion we see that the only finite-dimensional irreduc- 
ible representations defined on a graded Hilbert space are the following grade star 
representations: 

b f  1. 

(Sl)  

(S2) 

{xl} if a, = b = O  

{x,} if a, = b = 0;  

{x l ,  x2} if b = 1 ; a, = 0, 1.  

We note that all the above finite-dimensional irreducible representations were found 
by the superfield approach (Farmer and Jarvis 1983). 
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4.4. D(2, 1) = OSp(4/2): 

Dynkin diagram: 

E l  - PI' E 2  - < E j  

2 E 3  

a: 

Cartan matrix: 

0 +1 + 1  

0 +2 

The odd generators are designated here as 

The even generators corresponding to the even positive and negative simple roots are 
a ;  and a;. The 'hidden' Sp(2) generators are given by { p:* ,  p: '} .  The generators of 
the Cartan subalgebra are h, ,  h, and h,. The Cartan generator corresponding to the 
Sp(2) sector is given by k = 4(2h, - h, - h,). 

We designate the highest weight vector of an OSp(4/2) representation as A, with 
weight components (a , ,  a,, a,; b = $2~2, - a,- a3)), where h,ii = A(h,)A = a i A  and k A  = 
A ( k ) A  = bA.  Any OSp(4/2) representation can be uniquely decomposed in terms of 
O(4) xSp(2) irreducible representations. In general we have 16 of these (see § 4.1). 
The weight components of the O(4) x Sp(2) highest weight vectors are given below 

41 = A:  (a , ,  a29 0 3 ;  b )  

IC/, = PI-' \:  ( a , ,  a, + 1, a3 + 1 ; b - 1) 

( U ,  - 1, U,- 1, a3 + 1 ;  b -  1) 

( U !  - 1, U, + 1, a3 - 1 ; b - 1) 

*3 = p;-,i: 
*4 = p:-A:  
((15 = 6i-A: 
*6 = /3-p;-,4: 

* 8  = p'-p:-.\: 
*9 = /3-p;-.4: 

$lo = / 3 - i ; - A :  

*I, = p l - p : - p ; - . k  
$13 = p -pi-F;-A: ( a , - 3 , a , - l , a , + l ; b - 3 )  

( a ,  -2, a,- 1, a3- 1 ;  b -  1) 

(a ,  - 1, a,, a3+2;  b-2) 

*, = p1-p:-12: ( a l - l , a z + 2 , a 3 ;  b - 2 )  

( a , - 2 ,  a2r a,; b - 2 )  

(a ,  -2,  Q 2 ,  a,; b-2) 

( a ,  -3, a,-2, a,; b-2) 

( a ,  - 2 ,  a, + 1, a3 + 1 ; b -3) 

*I I = p: -p : - ,2 :  ( U , - 3 ,  U,, ~ 3 - 2 ;  b-2) 
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$14= P‘-P:-P;-A: 
* I S  = p;-p;- j ; -11:  

( U ,  -3, U 2  + 1, U 3  - 1 ; b -3) 

( U ,  -4 ,  U, - 1, - 1 ; b - 3) 

( L I 6  = P’-P:-P:-/?-A: 

highest weight vectors are given by the following: 

XI = *I 

x 2  = * 2  

( a ,  -4 ,  a,, a,; b -4). 
Applying the procedure discussed in 0 4.1, we find the corresponding O(4) x Sp(2) 

(4.9) 
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(a ,+a, -a,  1-2) 
( a 2 + I ) ( a , + a , - 2 a ,  +2) + a ; { P : - >  P : - h  

a i { P ; - >  P : - > X ,  
a ,  - 

(a3 + I ) (  a, + a3 - 2a 1 + 2)  

( u f  + a : -  a , a , - 2 a , a 3  +a,a, - a ,  $ 2 4  
( a ,  + a3 - 2a,)(a, + a3 - 2a1 + 2) + { P i - ,  P : - H P L  F:-}xl. 

Examination of the weights of the above states reveals a degeneracy in the sense 
that and $9 possess the same weight. Since the orthogonalisation procedure we 
have used does not allow us to overcome this multiplicity problem, we have been 
obliged to determine the irreducible spaces to which the corresponding O(4) x Sp(2) 
highest weight vectors, X 8  and x9, belong by mapping from states in the invariant subspace 
to linear combinations of i 8  and ,f9. We can then determine from the nature of these 
linear combinations whether both, none, or only one of X 8  and xr belong to the invariant 
subspace. The inner products, (x,, xi), of the remaining states are given below: 

( X i ,  X l ) S I , 2  = 1 

(X2, X2)SI = -(X2, X 2 ) s z  = - 0 ,  

( X ? ,  X4)SI = - ( X 4 ,  X4)S? = +a3(a3 - a ,  + I)/(a3 + 1 )  

( X S ,  .%)SI = - ( X s ,  X S I S 2  = +a,a,(a, +a ,  - a ,  +2)/1(a2 + I)(a3 + 111 
( X b ,  X6)SI = ( X 6 ,  X&2 = +a,(a, - a ,  + I )  

( X 7 ,  X7)SI = ( X 7 ,  x7)s.1= +a,(a,  - a ,  + I )  

(Xl0,XlO)SI =(Xl" ,XIO)S2=-(a , -a l  +l)(a,+a,-ua, +2)(a2- l)/(a2+1), 

(XI I, XI 1)Sl = (XI I, XI I)S2 = -(a3 - a1 + I)(a* + 0.3 - a ,  +2)(a,  - ] ) / ( a 3  + I ) ,  

(x12, x ~ ~ ) s ~  = -(xl2, x ~ ~ ) ~ ~  = al(a2 - a ,  + I"- a ,  + 1) 

x (a,  + a, - 2a, + 4)/( a, + a3 - 2a,  + 2), 

( x 3 5  X3)S l  = - ( X I ,  X3)SZ = a1 + I)/(a2 + 1) 

(4.1 a) 

~ 2 Z 0 ,  b Z O  

a 3 # 0 ,  b # O  

b #  1 
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(XI39 Xl3)Sl = -(X13, x13)sz = ala,(% - a ,  + +a3 - 2a, +4) 

x (a,  + a3 - a ,  + 2)/[(a, + I)(a, + a3 - 2a, +2)], b Z 1  

( X I 4 3  x 1 4 ) S I  = - (X I49  x14)SZ = a3(a3  - + + a 3  - 2 a l  +4) 

X(U2 + a3 - a ,  +2)/[(a3 + I)(a, +a3 - 2a,  +2)], b f l  

(XI53 x l 5 ) S l  = -(XIS, xl5)SZ = -a2a3(a2 - + - + + a3  - +2) 

x (a,  + a3 - 2al  +4)/[(a2 + I)(a3 + l)(a, + a3 - 2a,  +2)], b f l  

( x l 6 , x 1 6 ) S I  = ( x l 6 r X 1 6 ) S Z =  a l ( a 2 - a l  +1)(a3-al +1)(a2+a3-al +2)  

X ( U ,  + - 2 ~ 1  + 6)/( U,  + - 2~ I + 2), b f 0,2.  

I t  can be seen that under the conditions (i) a, - a ,  + 1 = 0, (ii) a3 - a ,  + 1 = 0, and 
(iii) a, + a3 - a ,  +2 = 0, the OSp(4/2) representation specified by the highest weight 
vector, A, is not irreducible and can be decomposed as shown in table 3. As discussed 
in 0 4.1, if b = 0, 1 ,2  or a, = 0, or a3 = 0, then (4.9) must be modified as per (4.1 a) .  If  
b = 0, then to obtain a finite-dimensional representation we must also impose the 
supplementary conditions a ,  = a3 = 0 (Kac 1978). This gives the singlet, xI, as the only 
irreducible, finite-dimensional representation. Similarly, if b = 1, then we must impose 
the supplementary condition a,=a,. This gives {xI ,x2,x5} as the only finite- 
dimensional, irreducible representation. Other ‘special’ cases we note are: if b = 2, or 
a, = 0, or a3 = 0, then one of x 8  or x9 is part of the infinite-dimensional subspace: if 
a, = a3 = 0, then both x 8  and x9 belong to the infinite-dimensional subspace. For the 
following cases table 3 must be modified as specified: if condition (iii) above is imposed 
and either a, = 0 or a3 = 0, or both, then x9 is part of the infinite-dimensional subspace: 
if condition (ii) is imposed and a, = 0, or if condition (i) is imposed and a, = 0, then 
x9 is part of the infinite-dimensional subspace. If  b = 1 and a, = a3 = 0, we obtain the 
fundamental {xl ,  x,}. If b = 2 and a, = a3 = 0, we obtain the adjoint {xI ,  xz, x6, x 7 } .  
The decompositions for all atypical, finite-dimensional, irreducible representations are 
given in table 3. For the existence of a finite-dimensional representation we require 
a,, a3 and b to be non-negative integers. 

From (4.10) and the above discussion, we see that the only finite-dimensional 
irreducible representations defined on a graded Hilbert space are the following grade 
star representations: 

(SI): { X I }  if a, = a3 = b = 0; 

{ X I , X 2 , X 6 , X 7 } i f b = 2 a n d a 2 = a 3 = 0 ,  

{x,} if a, = a3 = b = 0. 

We note that the finite-dimensional, irreducible representations found by the super- 
field approach (Farmer and Jarvis 1983) are all confirmed in the above analysis. 

Appendix 1 

In the following we present a diagrammatic proof that the choice (3.5), k,  for 5 and 
/? = ( O )  in ( 3 . 1 ~ )  uniquely determines the highest weight vector, A,  for B(m, n) and 
D(m, n). Given the selection criteria, for the diagram corresponding to A, which are 
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Appendix 2 

The adjoints (t) and superadjoints ($) of all even root vectors corresponding to simple 
roots and of all generators in the Cartan subalgebra are defined as follows: 

( a;)t = (a:)* = a;, (h,)' = (A,)* = h,. 

The adjoints and superadjoints of the odd root vectors can each be defined in two 
ways which we designate as Aa and Sa  respectively, where U =  1 or 2. If p' is the 
positive or negative odd root vector corresponding to the odd simple root as discussed 
in 0 2, then we define 

( p * ) ' =  * ( p * ) L ( - l ) O p T .  

The adjoints and superadjoints of the remaining odd generators for B(m,  n), D(m,  n) 
and C ( n )  can now be evaluated from their definitions in 0 2. For example, for C ( n ) :  

( p;," = ( -  l)J+'p; 
(p,*):  = *(- l)J+v+'p]T 

( . P " ~ - k ) ' = ( - l ) n t k t u . P " ~ _ k  

( p ; - k ) ' =  *(-I)n+k+v/?:-k 

where 1 s j s n, 1 s k s n - 2. 

generator { /3:, p ; }  defined in 0 2 transforms as 
We note that for B(m,  n) and D(m, n) ,  but not for C ( n ) ,  the 'hidden' even Sp(2n) 

{ P : ? P ; l * = - { P : m  and { P u ' , P ; } + = + { P : , P ; }  
corresponding to compact and non-compact real forms of Sp(2n) in the superadjoint 
and adjoint cases. respectively. 
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